Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations

نویسندگان

  • María Isabel Bueno Cachadina
  • Fernando de Terán
  • Froilán M. Dopico
چکیده

A standard way to solve polynomial eigenvalue problems P (λ)x = 0 is to convert the matrix polynomial P (λ) into a matrix pencil that preserves its elementary divisors and, therefore, its eigenvalues. This process is known as linearization and is not unique, since there are infinitely many linearizations with widely varying properties associated with P (λ). This freedom has motivated the recent development and analysis of new classes of linearizations that generalize the classical first and second Frobenius companion forms, with the goals of finding linearizations that retain whatever structures that P (λ) might possess and/or of improving numerical properties, as conditioning or backward errors, with respect the companion forms. In this context, an important new class of linearizations is what we name generalized Fiedler linearizations, introduced in 2004 by Antoniou and Vologiannidis as an extension of certain linearizations introduced previously by Fiedler for scalar polynomials. On the other hand, the mere definition of linearization does not imply the existence of simple relationships between the eigenvectors, minimal indices, and minimal bases of P (λ) and those of the linearization. So, given a class of linearizations, to provide easy recovery procedures for eigenvectors, minimal indices, and minimal bases of P (λ) from those of the linearizations is essential for the usefulness of this class. In this paper we develop such recovery procedures for generalized Fiedler linearizations and pay special attention to structure preserving linearizations inside this class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvectors and minimal bases for some families of Fiedler-like linearizations

In this paper we obtain formulas for the left and right eigenvectors and minimal bases of some families of Fiedler-like linearizations of square matrix polynomials. In particular, for the families of Fiedler pencils, generalized Fiedler pencils, and Fiedler pencils with repetition. These formulas allow us to relate the eigenvectors and minimal bases of the linearizations with the ones of the po...

متن کامل

Fiedler-comrade and Fiedler-Chebyshev pencils

Fiedler pencils are a family of strong linearizations for polynomials expressed in the monomial basis, that include the classical Frobenius companion pencils as special cases. We generalize the definition of a Fiedler pencil from monomials to a larger class of orthogonal polynomial bases. In particular, we derive Fiedler-comrade pencils for two bases that are extremely important in practical ap...

متن کامل

Fiedler Companion Linearizations and the Recovery of Minimal Indices

A standard way of dealing with a matrix polynomial P (λ) is to convert it into an equivalent matrix pencil – a process known as linearization. For any regular matrix polynomial, a new family of linearizations generalizing the classical first and second Frobenius companion forms has recently been introduced by Antoniou and Vologiannidis, extending some linearizations previously defined by Fiedle...

متن کامل

A Unified Approach to Fiedler-like Pencils via Strong Block Minimal Bases Pencils

The standard way of solving the polynomial eigenvalue problem associated with a matrix polynomial is to embed the matrix polynomial into a matrix pencil, transforming the problem into an equivalent generalized eigenvalue problem. Such pencils are known as linearizations. Many of the families of linearizations for matrix polynomials available in the literature are extensions of the so-called fam...

متن کامل

Explicit Block-structures for Block-symmetric Fiedler-like Pencils∗

In the last decade, there has been a continued effort to produce families of strong linearizations of a matrix polynomial P (λ), regular and singular, with good properties, such as, being companion forms, allowing the recovery of eigenvectors of a regular P (λ) in an easy way, allowing the computation of the minimal indices of a singular P (λ) in an easy way, etc. As a consequence of this resea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011